Semantic Theory 2014 - Exercise sheet 4

Manfred Pinkal
Exercises are due on Tuesday, May 20, 10:15 a.m.

3.1 Semantics of lambda expressions

Give an explicit stepwise interpretation (with respect to M and g) of

$$
\lambda F\left[F\left(\mathrm{~m}^{*}\right)\right](\lambda \mathrm{x} \cdot \operatorname{walk}(\mathrm{x}) \mathrm{v} \operatorname{talk}(\mathrm{x}))
$$

using the interpretation rules for Type Theory/ Typed Lambda Calculus. Please, no equivalence transformations or conversions, just interpretation!

3.2 Lambda expressions as lexical entries

Translate the following English words into lambda expressions:
(a) blond (type 〈et, et〉; use blond* as the underlying first-order predicate; the translation should show the intersective character of the modifier)
(b) altruist (type $\langle\mathrm{e}, \mathrm{t}\rangle$; take Sentence (j) from Exercise Sheet 1.1 as an informal definition of the predicate)
(c) in (type $\langle\mathrm{e},\langle\mathrm{et}, \mathrm{et}\rangle\rangle$; a preposition forming a PP as in work in Saarbrücken)
(d) someone (take the intended semantics from the lecture slides)
(e) only (type $\langle\mathrm{e},\langle\mathrm{et}, \mathrm{t}\rangle$; to be used as in Sentence (d) from Exercise Sheet 1.1)

3.3 and: more lambda expressions

(a) Assume that the and in Mary walks and talks translates to a constant and'. Give the appropriate type for and', and specify the appropriate semantic interpretation $\mathrm{V}_{\mathrm{M}}\left(\right.$ and' $\left.^{\prime}\right)$. No lambda abstraction here!
(b) Translate and into a lambda expression that expresses the meaning information given in the interpretation from (a).
(c) Assume that and in Mary and Bill combines two type e expressions, and returns a noun phrase of type $\langle\mathrm{et}, \mathrm{t}\rangle$. Translate this NP-coordinating and into a lambda expression (which will of course be different from the one in (b).
(d) Do the same, assuming that the arguments of and have the standard NP type $\langle\mathrm{et}, \mathrm{t}\rangle$.

3.4 Lambda conversion

Translate the following sentences into expressions of Typed Lambda Calculus:
(a) [Only Bill] [works in Saarbrücken].
(b) Bill [is a [blond altruist]].
(c) Mary [walks [and talks]].
(d) [John [and Mary]] walk.
(e) [John [and Mary]] [walk [and talk]]

Use the translations for only, blond, altruist, in from 3.2 and for the two variants of and from 3.3 (b) and (d). In addition, use the following lexical entries:

Bill $\rightarrow \lambda F \cdot F\left(\mathrm{~b}^{*}\right):\langle\mathrm{et}, \mathrm{t}\rangle \quad$ Mary $\rightarrow \lambda F \cdot F\left(\mathrm{~m}^{*}\right):\langle\mathrm{et}, \mathrm{t}\rangle$
Saarbrücken \rightarrow sb*: e work, walk, talk \rightarrow work', walk', talk': $\langle\mathrm{e}, \mathrm{t}\rangle$
$i s-a \rightarrow \lambda F . F$
Move along the syntactic structure indicated by the brackets, use function application and (multiple) lambda conversion, to arrive at the simplest possible expressions.

Hint: Use different variables for all lexical expression in a sentence (this is to avoid a variable conflict, which we will talk about next week). Download a new version of the Lecture 6 slides. I have added an example slide for lambda conversion.

